神经元

即神经细胞。一般都有长的突起,胞体和突起总称神经元(见彩图)。19世纪末叶,有些解剖学家认为神经系统是一个繁复缠绕的、不间断的网络。西班牙神经组织学家S.拉蒙·伊·卡哈尔主张、并初步证明神经系统是由无数细小的单位──神经元互相紧密接触所构成。神经元的功能是接受某些形式的信号并对之做出反应、传导兴奋、处理并储存信息以及发生细胞之间的联结等。由于神经元的这些功能,动物才能对环境的变化做出快速整合性的反应。在系统发生上自腔肠动物开始有神经细胞,至高等动物神经元的数目越来越多,神经系统也更为复杂。

动物组织——扁平上皮 动物组织——鳞状上皮 动物组织——柱状上皮 动物组织——弹性结缔组织 动物组织——网状结缔组织 动物组织——脂肪结缔组织 动物组织——平滑肌 动物组织——心肌 动物组织——骨骼肌 动物组织——多极神经元 动物组织——运动神经元 动物组织——扇形树突神经元

神经元可以直接或间接(经感受器)地从体内、外得到信息,再用传导兴奋的方式把信息沿着长的纤维(突起)作远距离传送。信息从一个神经元以电传导或化学传递的方式跨过细胞之间的联结(即突触),而传给另一个神经元或效应器,最终产生肌肉的收缩或腺体的分泌,神经元还能处理信息,也能以某种尚未清楚的方式存储信息。神经元通过突触的连接使数目众多的神经元组成比其他系统复杂得多的神经系统。神经元也和感受器如视、听、嗅、味、机械和化学感受器,以及和效应器如肌肉和腺体等形成突触连接。高等动物的神经元可以分成许多类别,各类神经元乃至各个神经元在功能、大小和形态等细节上可有明显的差别。

结构

胞体

神经元含有细胞核的部分,表面有细胞膜,膜与核之间有细胞质。胞体是神经元的代谢和营养的中心。高等动物胞体的直径为4~100微米,胞体内有一个大而圆的细胞核,大的神经元的胞体内含有较多的细胞质(图1)。

图1

神经元的细胞质内除含有一般细胞器如线粒体、高尔基器等外,尚含特有的结构──尼氏体和神经元纤维等。尼氏体可被碱性染料染色,在光学显微镜下呈小粒或小块状的物质。不同类型的神经元内尼氏体的形状、数量和分布各有不同。在电子显微镜下,可见尼氏体由粗糙内质网和核糖体构成,它可能是合成结构性和分泌性的蛋白质以及在突触传递中的递质的主要部位。在光学显微镜下观察银染色的神经组织,可见神经元的胞质中有棕色的细丝,即神经元纤维。它在胞体中呈网络状,在突起中则与突起的长轴平行排列。电子显微镜下可见到直径为1000纳米的神经丝和直径2000~3000纳米的微管,均由蛋白质组成。有人认为神经元纤维可能是神经丝和微管在固定时的凝聚产物。神经丝和微管的功能除维持细胞的外形外,还可能在神经元内有运输物质的作用。胞体内的高尔基器位于细胞核附近,与神经的分泌有关。神经元跨越突触向另一神经元或效应器所释出的神经递质,便需先在高尔基器中浓缩“包装”在囊泡内,然后经轴突转送到纤维末梢。线粒体广泛地分布于神经元的各个部分,在轴突末梢特别丰富,是神经元的能量供应中心。

突起

一般可由胞体延伸出两种突起即树状突起(简称树突) 和轴状突起(简称轴突)。

(1)树突。从胞体发出的多根而且多分枝的突起。大多数神经元具有多根树突。树突从胞体发出后便重复分枝并逐渐变细。不同的神经元,树突分枝的多少、长短和分枝样式有很大差别。粗树突的结构和胞体相似,含有粗糙面内质网、线粒体和平行排列的神经元纤维。有些神经元树突的分枝上有树突棘,后者也可与其他神经的末梢接触形成突触,树突的广大面积是神经元接受信息,并处理信息的主要区域。信息以电信号的形式在树突上扩布并被整合,这种电信号与轴突上传导的兴奋的电位不同,属于电紧张电位。中国神经生理学家张香桐最早讨论了树突和外来神经以及胞体和外来神经末梢所形成的各种突触与功能的关系,指出它们在神经元接受信息中的作用,并研究了树突整合作用的机制。

(2)轴突。由胞体发出的单根突起,除了接近末梢处之外,各段落之间的粗细无明显差别。它以直角方向发出侧枝。轴突的末梢反复分枝而形成终末,终止于另一神经元或效应器,与它们形成突触。轴突被髓鞘和神经衣或单被神经衣包裹而形成神经纤维。脊椎动物的神经纤维依髓鞘之有无可分为有髓纤维和无髓纤维。轴突内的胞质叫轴浆,内含细长的线粒体、光滑内质网以及纵行排列的微管和神经丝。轴突的功能主要是传送快速的电信号,并在胞体与末梢之间输送物质。轴突除控制效应器的功能活动外,还能持续地调整被支配组织的代谢活动,维持其结构与功能上的特性,这种作用叫做神经的营养作用。轴突的髓鞘是许旺氏细胞膜螺旋式地围绕轴突形成的极层。在两个许旺氏细胞之间有一小段无髓鞘的间隙(约1微米),称做朗维埃氏结。两结间的距离在不同的神经纤维和不同的动物之间有很大的差异,其变动范围在50~1500微米之间。这是神经冲动在轴突上快速跳跃传导的结构基础。

(3)轴浆运输。某些细胞器和化学物质沿神经突的运输,它既见于轴突也见于树突,由于先在轴突发现,故称为轴浆运输,轴浆运输有顺向与逆向两种:顺向即物质从胞体运到末梢;逆向即从末梢运向胞体。顺向运输远比逆向的量多、速度快。被运输的物质有些是胞体合成的,有些是纤维或末梢从环境中摄取的。轴浆运输有维持存活的作用,它也有维持纤维末梢正常的突触传递的作用。有人猜想轴浆运输的物质中有神经的营养物质。这已在逆向运输中得到证明,如已知交感神经末梢从靶器官摄取神经生长因子,经逆向运输达到交感神经元的胞体,它能促进交感神经元的发育。

类别

神经细胞是多种多样的,可以作各种分类。从功能来说可分为3类:

(1)直接与感受器相连,将信息传向中枢者叫感觉(传入)神经元;

(2)直接与效应器相连,把信息传给效应器者叫运动(传出)神经元;

(3)在感觉和运动神经元之间传送信息者叫中间神经元。根据神经元突起的形态与数目,又可把神经元分为:

(1)单极神经元。从胞体只发出一根突起(轴突),在脊椎动物中,单极神经元除在胚胎阶段外比较罕见。无脊椎动物中有较多的单极神经元。脊椎动物的背根神经节内的感觉神经元自胞体只发出一根突起,然后依“T”形分叉为2支,分别称为中枢突和外围突,叫假单极神经元,属传入类型。

(2)双极神经元。从胞体发出两根突起的神经元。短而分支多的突起叫树突,长而均匀的突起叫轴突。双极神经元可有各种形状,属传入类型,见于视网膜、前庭神经和耳蜗神经的节内。

(3)多极神经元。从胞体发出许多突起,典型的只有一根轴突和若干树突(图2)。这是脊椎动物神经系统内有代表性的类型。大脑皮质的锥体细胞、小脑的蒲肯野氏细胞、脊髓和脑干内的运动神经元都属于这种类型。

图2

大小和数量

哺乳动物最大的神经元胞体的直径可达125微米,最小的仅4微米。胞体仅是神经元的一小部分,就背根神经节的神经元来说,胞体的面积仅占整个神经元表面面积的 0.4%,其余的99.6%是突起的面积。许多无脊椎动物的神经元较之脊椎动物要大得多。例如海兔神经元的胞体可达 1毫米。枪乌贼神经元的巨大轴突直径可达 1毫米。中枢神经系统神经元的数量随着动物的进化而增大。无脊椎动物的神经节一般有几百到几千神经元,而人脑的神经元数可达150~200亿。

参考书目
  1. T.H.Bullock, Introduction to Nervous System.W.H.Freeman & Co.,San Francisco,1977.
  2. S.W.Kuffler et al., From Neuron to Brain,A Celluler Approach to the Function of theNervous System,Sinauer Associated,Inc.,Suderland Massachusetts,1976.

参考文章