磁流体发电

利用热离子气体或液态金属等导电流体与磁场相互作用,把热能直接转换成为电能的发电方式。提高热效率是热能利用的基本技术要求。常规火力发电需将燃料的热能通过汽轮机先转换成机械能,然后再带动发电机发出电能。磁流体发电可以直接将热能转换为电能,这样就允许采用更高的入口温度(1000~3000K),提高了热效率,同时又免去了高温高速旋转运动的汽轮机装置。磁流体发电还可以与常规火力发电组成联合循环的运行方式,使综合热效率提高到50~60%,为能源利用带来巨大经济效益。磁流体发电还能减少大气污染,节省冷却用水,因而成为许多国家积极研究的一种发电方式。

基本原理

当导电流体垂直横越磁场B时,在垂直于磁场和电流运动的方向上将出现电场 E。此电场构成电动势,连接负载就可以引出电流而获得电功率法拉第电磁感应定律仍是磁流体发电的基本原理,只是在磁场中运动的固体导体为导电流体所代替。

热离子体或液态金属等导电流体都属于等离子体,其特性由等离子体物理学来描述。导电流体与磁场的相互作用规律,则由磁流体力学(MHD)方程来表达。磁流体发电中,导电流体单位体积的功率输出We可由下式表示:

Weυ2B2K(1-K)

式中σ为导电流体即等离子体的电导率,υ为等离子体的运动速度,B为磁场的磁通密度K为电负载系数。典型的数据是σ=10~20姆/米,B=5~6特,υ=600~1000米/秒,K=0.7~0.8,We在25~150兆瓦/米3的范围内。

系统构成

磁流体发电装置由下列4个基本部分构成(见图)。

图

(1)燃烧室:通过矿物燃料与氧气或压缩预热空气的燃烧产生高温等离子体,达到磁流体发电所要求的温度。

(2)通道:在此通道内等离子体以高速穿过磁场,感应出电动势,再由镶在通道两侧壁上的电极引出直流电流。

(3)磁场:用高性能的磁铁或超导磁体产生,作用在等离子体上。

(4)工质:即工作气体。通常使用矿物燃料(煤、石油、天然气)的燃烧气体、惰性气体或碱金属蒸气。当使用燃烧气体时,为了获得足够的电离度,需掺入少量添加剂,又称为“种子”。一般采用碳酸钾作添加剂。添加量约为总质量流的1%,这样会使气体温度在3000K以下即可获得足够的电导率。对于单原子气体,用铯作添加剂可以使运行温度降低到 1500K。液态金属流体是在蒸汽或流体流中射入液态金属而形成的液相工质。

装置类型

按照工质在装置中一次使用还是循环连续使用,磁流体发电装置分为开环和闭环两种类型。

(1)开环装置:工质(包括种子)在燃烧室中燃烧产生高温等离子体,通过排气喷嘴高速释放,在磁场作用下经过通道感应出电动势,然后排出。

磁流体开环发电装置可以作为一级前置装置,与火力发电机组联合循环运行。将磁流体发电排出的余气供给辅助蒸汽发生器产生高温蒸汽,用它驱动汽轮发电机组,使热能得到充分的利用。

经过二级开发以后的排气,再由净化装置将种子回收,还利用其中的硫和氮制成硫酸和硝酸,最后排放到大气中。

(2)闭环装置:基本工作过程与开环装置类似,只是工质不被排放,而是在系统中反复循环使用。这类装置宜于用原子裂变反应堆作热源,其工质可以是惰性气体或液态金属-蒸气的混合物。闭环装置设计温度较低,使用液态金属工质时设计温度可以更低(1500~2000℃),主要应用于军事和空间技术。金属(锂)蒸气的闭环磁流体发电已在航天工程中使用。

进展

燃烧矿物燃料的开环磁流体发电是主要研究方向,许多试验装置已经给出了磁流体发电过程的工程数据,技术上最先进的磁流体发电装置是苏联莫斯科北郊的U-25装置。它是一个用天然气作燃料的开环装置,已经发出20.5兆瓦的额定功率,并且送入莫斯科电网。苏联正在建造 75兆瓦磁流体-蒸汽联合循环发电的试验电站,还计划建造580兆瓦的磁流体发电站。美国成功地验证了直接燃煤的磁流体发电装置。由阿夫柯·埃夫勒特研究所研制的18兆瓦磁流体发电机已经为空军阿诺德试验中心的风洞提供电力。日本一台具有 5特磁场的超导磁体试验性磁流体发电装置已在运行。英国、法国、中国等国也都开展了研究工作。中国与美国合作,1984年成功地进行了一座小型磁流体-蒸汽动力联合循环模拟电站的试验。

磁流体发电要达到工业应用的阶段,还需解决许多技术问题,例如更经济适用的工质,可在高温下持续工作的通道和电极,以及性能良好、造价低廉的超导磁体等,以提高可靠性和经济性。