金属中气体分析

金属中的气体主要是氧、氢、氮,通常以金属化合物、固溶体、气孔或气泡形式存在。气体的含量即使低至10ppm,对许多种金属的力学和物理性能仍有影响。因此超纯金属和半导体材料等中的气体含量甚至要低至 ppb级。气体分析已有50年的历史,约在30年代在精炼钢工艺过程中研究脱氧剂效果时,开始分析金属中气体。最初应用氢还原法测定钢铁中氧,应用真空加热法测定钢中氢等。1945年以后随着真空技术的发展,用真空熔融法测定氧,准确度大为提高。常用的气体分析方法有以下几种。

熔融抽取法

高温熔融抽取法应用最广,可单独或同时测定氧、氢、氮。已应用于分析钢铁、铁合金有色金属及其合金、贵金属、难熔金属、稀土金属、半导体材料中的气体。金属在真空或惰性气体介质中,在高温条件下抽取气体。金属中的氧化物热稳定性高,加热难以完全分解,须用石墨碳还原成一氧化碳形式抽取,至于氢和氮则分别以氢分子和氮分子的形式抽取。首先加热石墨坩埚,达到2000℃以上,使之脱气。然后降低至操作温度测定空白值,空白值要低并稳定。投入试样抽取气体,必要时加浴料。脱气温度、时间,操作温度,浴料种类和用量,试样重量,抽取时间等等,可采用实验法找出最佳条件。真空熔融法准确度高,是气体分析的标准方法,但设备和操作繁杂,分析时间长,真空检漏费事。采用惰性气体载流,则设备简单,操作方便,分析速度快。分析的准确度和灵敏度取决于所用装置的结构和测定仪器的精度、操作条件、空白值等。试样须仔细制备,确保表面光洁,无发纹、裂纹、夹杂物、油污等。氢在金属中易于扩散逸出,最好制样后保存在液氮中,并及时分析。此法灵敏度一般可达ppm级、0.1ppm级或更高。

用高温熔融抽取法抽出的气体通过加热的氧化铜或五氧化二碘,使一氧化碳氧化为二氧化碳,氢氧化为水,以便分离和测定。测定气体的方法有:

(1)气相色谱法。将抽取的气体转移到硅胶色谱柱或分子筛色谱柱,用氩作载气,将一氧化碳、氢、氮分离,进入钨丝热导池测量,可同时测定氧、氢、氮的含量。

(2)冷凝微压法。在真空系统内测定除去水汽和二氧化碳气前后的压差,计算氢、氧的含量。

(3)质谱法。将抽取出的气体导入气体分析用的质谱计,测定氧、氢、氮。

(4)库仑法。将二氧化碳导入一定pH的微碱性高氯酸钡电解液中,由于吸收二氧化碳而使pH改变,最后用恒定脉冲电流滴定,使pH复原,从消耗的电量求出含氧量。

(5)电导法。电导池中,氢氧化钠溶液吸收二氧化碳后,电导发生变化,测量电导的改变,求出含氧量。

(6)红外吸收法。将极性分子一氧化碳或二氧化碳导入红外线吸收池内,按红外线吸收量测定含氧量。

(7)非水滴定法。将二氧化碳导入非水溶剂丙酮,用氢氧化钾甲醇溶液滴定,求出氧量。

化学分析法

氢还原法

用于粉末样品中氧和氮的测定。样品在高纯氢气流下加热还原,氧与氢反应生成水,可用重量法或卡尔菲休容量法测定。氮与氢反应生成氨,在酸性介质中吸收后用容量法、光度法、库仑法或离子选择性电极测定。

燃烧法

用于金属氢化物或含氢量高的金属。试样在高温下通氧燃烧,氢与氧生成水,再行测定。

凯氏法定氮

将试样溶于酸,氮转化为氨,在碱溶液中用蒸镏法分离氨,吸收于酸溶液中。测定方法同氢还原法。此法操作简单,适用范围广,灵敏度可达10-6左右。

其他方法

此外还有测定氧的硫化法、卤素法、溴碳法、汞齐法、铝法等;测定氮的氧化熔融法、还原碱溶法、卤化法、电解法等等。

物理分析法

试样可不经加热抽取或化学反应,直接用物理分析方法测定,主要有放射化分析法(活化法),同位素稀释法,火花源质谱法,发射光谱法等。物理法灵敏度较高,但设备昂贵。

固体电解质浓差电池法

此法用于监测熔化了的金属和合金中的氧、氮、氢的含量,能在冶炼过程中直接连续测定。

金属表面的气体分析

分析表面和近表面的气体对研究金属材料是极关重要的。方法有带电粒子束活化分析法和瞬发辐射分析法,利用光子束与电子束的表面分析仪器如化学分析用的电子能谱(ESCA)、紫外光电子能谱(UPS),俄歇电子能谱(AES),电子能量损失谱(LEED)和穆斯堡尔谱,二次离子质谱(SIMS),扫描电镜(SEM)等。