阻抗测量

在低频、高频和超高频范围内,测量集总参数电路或元件中电压与电流的复数比(阻抗)或其倒数(导纳)。分布参数电路中的阻抗测量属于驻波与反射测量。阻抗测量包括复数阻抗、导纳与电感、电容、电阻、品质因数及损耗因数等实数参量的测量。属于同一被测对象的上述诸参量之间具有确定的换算关系,因而只要测出其中几项便可求出其他参量。

阻抗的计量单位欧姆的依据,是标准电阻器和电抗器,而电阻、电抗的基准则源于可计算电容。日常计量测试所有的电抗标准,大都采用各种固定的和可变的标准电容器,因为它们与标准电感器相比,具有较小的残余参量和较好的稳定性

电桥法

交流电桥测量阻抗的原理与用直流惠斯登电桥测量电阻的原理相同。电桥电源 E用指定频率的正弦信号,平衡条件由四个桥臂的复数阻抗(图1)决定,即

公式 符号

调节已知臂中某两个元件,使指示器D示零,便可由平衡条件式求出未知臂的阻抗。

图

通用电桥

内含固定频率 (例如1千赫)信号源和零指示器并可迅速改接成多种常用电路的电桥 (如用惠斯登电桥测电阻,用电阻比率电桥测电阻或电容,用电阻乘积电桥测电感,图2),俗称万用电桥或 RCL电桥。这类电桥常以固定的C0作为电抗标准,靠调节电阻R1R0达到平衡,然后由R1读出CXLX

图

高频电桥

当频率高于数十千赫时,交流电桥便会因桥臂残余参量和杂散电磁耦合而不能正常工作,须选择适当的电桥电路并仔细地加以屏蔽和接地。例如,图3a的变压器比臂电桥和图3b的双T电桥易于屏蔽,这是因为标准臂、未知臂和零指示器甚至信号源均能接地,它能工作到数十以至数百兆赫。双T电桥便于测量导纳,故又称导纳电桥。电桥法的优点是测量精确度较高;缺点是频带有限和操作困难。

图

谐振法

利用回路的谐振现象是测量高频元件参量的主要方法。在图4的串联谐振回路(也可用并联回路)中,当调信号源u 的频率f 或调标准可变电容器C 使回路达到谐振时,有

公式 符号

电流I或电压U达到最大。如果已知fC值,便可求出L值。在Q表中,通常使f取某些固定值,便可将C的度盘另一刻度直读L。由于标准电感不易得,谐振法测量电容通常采用标准电容替代法, 用Q表测量电阻等损耗参量(见品质因数测量)。

图

电压-电流法

按照阻抗定义直接求取电压对电流之复数比,以求得阻抗值,又称复数伏安比法。通常用一个恒流源来提供固定的电流值。用电压表分别测出被测件和同类标准器上的端电压,即可求得被测的电阻、电容或电感值。如果仅用标准电阻器作为标准,则可求得被测件阻抗的绝对值|Z|(模值)。电压表上可直接以RLC 或│Z│来标定,这样就构成了直读式RLC表或阻抗表。如果把被测件和标准电阻上的端电压加到幅-相检测器(矢量电压表)的两个输入端,则可测得被测阻抗的模值和相角,这称为矢量阻抗表;或者得到被测阻抗的实数部分(电阻)和虚数部分(电抗),这就成为复数阻抗表。这类阻抗表是直读式仪器,使用十分方便,工作频率可达几十至几百兆赫。

参考书目
  1. B.M.奥利弗、J.M.卡奇编,张伦等译:《电子测量和仪器》,科学出版社,北京,1978。(B.M.Oliver and J.M.Cage,Electronic Measurements and Instrumentation,McGraw-Hill,New York,1971.)