突变论

研究不连续现象的一个新兴数学分支,也是一般形态学的一种理论,能为自然界中形态的发生和演化提供数学模型突变论在数学上属于微分流形拓扑学的一个分支,是关于奇点的理论。因为英文 catastrophe一词的原意为突然来临的灾祸,所以也有把它译作灾变论。突变论一般并不给出产生突变机制的假设,而是提供一个合理的数学模型来描述现实世界中产生的突变现象,对它进行分类,使之系统化。突变论特别适用于研究内部作用尚属未知、但已观察到有不连续现象的系统。

简史

突变论是20世纪60年代末法国数学家R.托姆为了解释胚胎学中的成胚过程而提出来的。1967年托姆发表《形态发生动力学》一文,阐述突变论的基本思想,1969年发表《生物学中的拓扑模型》,为突变论奠定了基础。1972年发表专著《结构稳定与形态发生》,系统地阐述了突变论。70年代以来,E.C.塞曼等人提出著名的突变机构,进一步发展了突变论,并把它应用到物理学、生物学、生态学、医学、经济学社会学等各个方面,产生了很大影响。

研究方法

从I.牛顿和G.W.莱布尼兹时代以来得到很大发展的微积分学,一般只考虑光滑的连续变化的过程,而突变论则研究跳跃式转变、不连续过程和突发的质变。突变论的基础是结构稳定性。结构稳定性反映同种物体在形态上千差万别中的相似性。例如,人的面貌虽因岁月流逝而发生变化,但仍存在区别于他人的特征。结构稳定的丧失,就是突变的开始。突变论的基本概念是静态模型,它把形态按结构稳定特征分类。至于描述结构变化的动力学理论,至今仍不完备。

图

突变论的数学基础是奇点理论和分岔理论。最原始的奇点是微积分中实变函数的极大极小点(临界点)。这种函数可看成是实数空间 R1(坐标x)到实数空间R1(坐标y)的映射。而平面(x1,x2)到平面(y1,y2)的光滑映射可用一对函数 y1f1(x1,x2),y2f2(x1,x2)表示。1955年H.惠特尼在研究这种映射的特点时,得出两类一般奇点。一类是折叠,可用公式y1x剮,y2x2表示。把球面投射到平面上,赤道上的点产生的奇点就是这种奇点。另一类是尖点,局部坐标可写成y1x劅+x1x2,y2x2。把空间曲面y1x劅+x1x2投影到平面(y1,y2)上,平面上有一半立方抛物线,在原点处有一个尖点 (见图)。曲线把平面分成两部分,较小部分的原像均由三点构成,而较大部分只由一个点构成。在尖点处映射引起突变,这是突变论所研究的最常见的一种突变。惠特尼证明,尖点是稳定的,也就是在这种映射附近的映射在适当的地方也有同类的奇点。

托姆把惠特尼的奇点理论加以推广,应用到突变论中。他研究Rn+rRr的奇点分类问题。这里n是描述系统状态的参数(称为状态参数或内部参数)的数目,而r是控制参数(又称外部参数)的数目。随着控制参数的改变,状态参数可能产生突变,在突变处控制参数值称为突变点。通常n可以任意大,但Rr可取作四维时空欧氏空间,反映时空中进行的控制过程。

静态模型

静态模型是一族势函数fu:XRn,其中X是状态空间Rn的子集,包含原点的邻域,参数u属于控制空间Rr中原点的邻域U。状态空间Rn可用与过程有关的状态参数来表示,控制空间Rr则可用控制过程中控制参数来描述。当维数r≤4时,具有标准势函数的静态模型就是初等突变。它可作为各种自然过程的定性模型。静态模型已被推广成代谢模型。表中列出了所有初等突变。

表

除了基本的初等突变外,托姆还给出高阶突变,为建立一般突变论奠定了初步的基础。他描述的鸡胚发育模型和蟹状星云、超新星爆炸残余模型都属于一般突变论的范畴,但还没有建立起一般的数学理论。

应用

突变论应用范围极为广泛。在数学、力学和物理学中,借助突变论不仅能加深对已有定律的认识,而且还能得到一些新的成果。例如,利用突变论找到了光的焦散面的全部可能的形式。在生物学和社会学中,许多现象很难用其他数学方法处理,但用突变论可得到理想的数学模型。如捕食者与被捕食者系统中群体消长情况,用微分方程不能得出满意的解释,而用突变论预测的结果却与实验符合。利用突变论有可能预测系统的许多定性性态,甚至在不知道系统的描述采用什么样的微分方程,或者不知道怎样求解这些微分方程的情况下,也能获得结果。而且这种预测是在少数几个假设的基础上完成的。例如对于胚胎形成过程、心脏搏动、大脑机制、船舶稳定性等都曾用突变论建立过相当的数学模型,并取得一定的成效。

参考书目
  1. P.T.桑德斯著,凌复华译:《灾变理论入门》,上海科学技术文献出版社,上海,1983。(P.T. Saunders, An Introduction to Catastrophe Theory,Cambridge Univ.Press,1980.)
  2. R.Thom,Stabilité Structurelle et Morphogénèse,Reading, Mass., Benjamin,1972.